

Report

FORCE-Dantest CERT

Measurement of Sound Pressure Level From Whistles for Lifejackets According to EN 394 (Lifejackets and personal buoyancy aids – Additional items)

National Molding Europe srl.
Cambiano, Italy

3. March 2005

FORCE Technology

DANAK no.: 91-152 Project no.: m1445-235450 Project leader: Peter Just

1. Summary

FORCE Technology was requested by Mr. Attilio Lovato, "National Molding Europe" - Italy to measure and estimate the sound pressure levels for whistles for lifejackets produced by "Uraflex".

The measurements are carried out according to European Standard EN 394: "Lifejackets and personal buoyancy aids - Buoyancy items, part 4.3 - Whistles".

- The average A-weighted sound pressure level of LpA,max at the required distance of 5 m in all tested blows (wet or dry) reaches a 101 dB, (re 20 µPa) which is higher than the required minimum level.
- The average A-weighted sound pressure level of $L_{pA,max, PEAK}$ is 109 dB, (re 20 μ Pa).
- . The frequency analysis shows that the lower dominating tone of 1963 Hz is within the required range of 1900 - 2100 Hz.

Thus, all tested whistles comply with the standard EN 394.

FORCE Technology

3. March 2005

Dimitar Ianev

M.Sc.Eng. - Acoustics

Authorized to sign

2. Introduction

FORCE Technology was requested by Mr. Attilio Lovato, "National Molding Europe" - Italy to measure and estimate the A-weighted sound pressure levels for whistles for lifejackets produced by "Uraflex" see fig.1.



Fig. 1: The test object - whistle for lifejackets by "Uraflex"

3. Measurements

The measurements were carried out on 21st of February 2005 by FORCE Technology – Peter Just and Dimitar Ianev. The set up is an open site (parking lot) covered with asphalt (reflection surface) with no other sound reflecting surfaces in the close vicinity – see fig. 2.

During the measurements the weather was calm and dry. The wind was light and without measurable influence on the results. The air temperature was about 2°C.

The person blowing the whistle was a 28 years old man, 175 cm high and non-smoker, without any known pulmonary diseases. The whistle was held by one hand when blown – see fig. 2.

Fig. 2: The test subject and the set-up.

There were used 3 whistles and each one was tested 6 times in "dry" and "wet" condition. The distance to the measuring microphone was 5 m, as prescribed in the standard. The height of the microphone was 1,5 m over the surface (asphalt).

The measurement was done as A-weighted maximum values of $L_{pA,max}$ and $L_{pA,max,\,PEAK}$, (dB re 20 μ Pa) respectively. The integration time of the used equipment when $L_{pA,max}$ was measured, was set to "FAST".

4. Standards and equipment

The measurements and the set-up were done according to European Standard EN 394: "Lifejackets and personal buoyancy aids – Buoyancy items, part 4.3 – Whistles" – se appendix 1. A calibration signal was recorded on the tape before and after the measurements.

Instrument	Type	Serial no.	Last calibration date	Next calibration date	
Microphone	B&K 4165	1594201	27.06.2004	27.06.2005	
SPL meter	B&K 2231	1767963	11.08.2003	11.08.2005	
Calibrator	B&K 4230	1410461	20.06.2004	20.06.2005	
Tape recorder	HHB 1000	10679	17.11.2004	17.11.2006	
Software	Multi	-	67' -	637	

Table 1. Description of the used equipment

5. Results

During the test the A-weighted maximum values of $L_{pA,max}$ and $L_{pA,max,\,PEAK,}$ (dB re 20 μ Pa) respectively were registered – see table 2 and 3.

_6	Whistle no.								
.497	1 (8)		2		3				
Test	Dry	Wet	Dry	Wet	Dry	Wet			
No.1	102	102	102	100	102	100			
No.2	100	101	101	101	101	100			
No.3	99	102	103	101	100	101			
No.4	100	101	101	101	100	101			
No.5	102	101	101	102	102	101			
No.6	-	101	-	101	103	99			
Average	101	101	102	101	101	100			

Table 2. A-weighted values of $L_{pA,max}$ (dB re 20 μ Pa) and their average for all 3 whistles.

4	1/4		Whistle no.				
1 0		2		3			
Test	Dry	Wet	Dry	Wet	Dry	Wet	
No.1	109	108	109	108	110	108	
No.2	108	109	109	110	110	109	
No.3	109	111	110	110	109	110	
No.4	108	109	110	110	109	109	
No.5	109	109	109	111	111	109	
No.6	-	109	-	109	111	109	
Average	109	109	109	110	110	109	

Table 3. A-weighted values of LpA,max, PEAK (dB re 20 µPa) and their average for all 3 whistles

The frequency analysis of a blow with any whistle (dray or wet) shows that there are 2 dominating frequencies (determinate by the volume of the 2 chambers), at approximately 1963 and 2613 Hz - se fig. 3. The lowest one is between the recommended limits of 1900 - 2100 Hz.

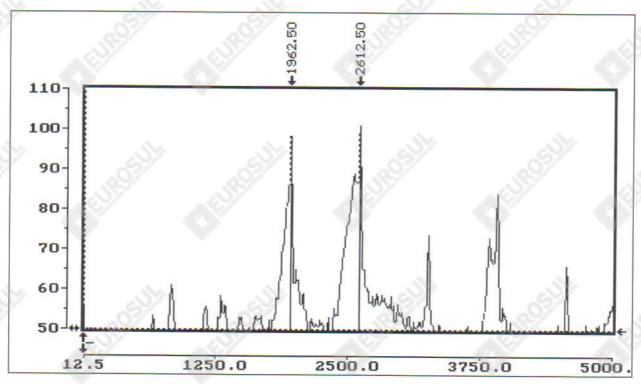


Fig. 3: FFT spectrum of a blow on whistle "Uraflex", below 5000 Hz with Hanning window and resolution of 18,75Hz. The lowest dominating fundamental frequency is at 1963 Hz.